Perhaps even more significant, Bill’s program has been critical for developing infrastructure and the applications of new tools to ecology. Examples abound, but here are four (in more or less chronological order) that demonstrate the durability and astonishing range of ecological programs that Bill has nurtured: (1) While stable isotopes are now a commonly used tool that, to a considerable degree, has changed how ecologists can study nature, this was certainly not the case in the early 1970s. At that time, Bill decided to support the development of a center for the use of stable isotopes, at the Ecosystem Center at Woods Hole. This center, was, with Bill’s help, conceived as an “incubator” for developing the use of isotopes for ecological questions; before that, isotopes were mainly a geological tool. Most would agree that this center has contributed critically to isotope-related studies. (2) Bill provided the support for the Society’s first introspective look at establishing research priorities. This investment launched the Sustainable Biodiversity Initiative (SBI) and put ESA at the forefront of scientific societies in getting a community-wide plan for the future. SBI has become an integral part of ESA’s efforts and is a very powerful symbol of a group that has its act together. (3) A third example stems from Bill’s recognition of the deep significance of long-term data sets. Through Bill’s efforts, Mellon funded ESA to examine this issue in an ecological context. (4) More recently, a major example of Bill’s role in developing the infrastructure for ecological research is the JSTOR project, which takes the vast inventories of major journals and converts them to electronic form. JSTOR has already become an important research tool for ecologists, and Bill has been the prime mover at Mellon in establishing this program. He has stuck with it along the way, convinced others of its importance, assured funding for it, and helped in the selection and acquisition of journals.

His support of ecological research and education through his activities at Mellon would be sufficient for Bill to be highly deserving of this award. However, Bill has also served ESA directly in a variety of functions: as a member of the Public Affairs Committee, the Search Committee for an Executive Director, and, most recently, the committee to identify journals for electronic archiving.

Part of the reason for Bill’s success in supporting ecology in all of these ways stems from the care with which he listens to and interacts with people. He also has a deep interest in the ideas of ecology, going back to his early training in biology as an undergraduate and master’s student in Iowa and Texas. Bill has a rich, textured understanding not only of how science works as an enterprise, but also of the history, momentum, and potential that make up our own field.

For decades, Bill has been almost anonymously working behind the scenes on behalf of ecologists and ESA. The Society has called upon him for a variety of tasks; he never seems to say no. His service is selfless and invaluable, and his energies, wisdom, judgment, and experience have served the Society well on countless occasions. He is exactly the sort of individual for whom this award was invented—one who does what he does because he wants to serve others and help them get the glory. For his service to the Society, to the scientific community, and to the purpose of ecology in the public welfare, ESA is delighted to award the Distinguished Service Citation to Bill Robertson.

Distinguished Service Citation
Subcommittee: Deborah Goldberg (Chair), Steve Carpenter, Pamela Matson, Judy Meyer, Bruce Menge, Steve Pacala, Richard Tracy

EUGENE P. ODUM AWARD

The Eugene P. Odum Award for Excellence in Ecology Education is a new award recognizing an ecologist for outstanding work in education. It was generously endowed by the distinguished ecologist Eugene P. Odum, Callaway Professor Emeritus of Ecology at the University of Georgia, Athens. This award draws the attention of the discipline as a whole to the education-related work accomplished by our colleagues who, through teaching, outreach, and mentoring activities, relate basic ecological principles to human affairs and contribute to a better world.

The winner for 2000, and first recipient of the Odum Award for Excellence in Ecology Education, is Dr. Peter Feinsinger, Adjunct Professor of Biology, Northern Arizona University. Feinsinger has a distinguished record of research in ecology (including work on hummingbirds, foraging, and pollination ecology), but his devotion to and leadership in ecology education at all levels (locally, nationally, and internationally) is simply outstanding. Peter was an innovator in inquiry-based teaching and learning in college biology courses well before such approaches became widely known (e.g., in the late 1970s and early 1980s). Colleagues and students regard Feinsinger as an inspirational mentor in ecological education for students at all educational levels, and it is clear to those who have worked with him that he is motivated by his wisdom, judgment, and experience have served the Society well on countless occasions. He is exactly the sort of individual for whom this award was invented—one who does what he does because he wants to serve others and help them get the glory. For his service to the Society, to the scientific community, and to the purpose of ecology in the public welfare, ESA is delighted to award the Distinguished Service Citation to Bill Robertson.

Distinguished Service Citation
Subcommittee: Deborah Goldberg (Chair), Steve Carpenter, Pamela Matson, Judy Meyer, Bruce Menge, Steve Pacala, Richard Tracy

Peter Feinsinger
love and enthusiasm for the natural world, rather than personal ambition. Moreover, he is admired as an excellent communicator and collaborator.

Feinsinger has played a key leadership role in promoting excellence in ecological education for young children for at least 20 years. What began as a concern for the education of his own children has led to years of commitment and action, broadly influencing ecological literacy throughout our hemisphere through the education of thousands of teachers and children. In an influential essay published in *TREE*, Feinsinger questioned the value of teaching young children about ecology through books and TV specials that featured enchanting animals living in faraway places. He suggested, instead, that teaching children to observe and learn about the habitats in their own neighborhoods would both be more interesting for the children and lead to deeper understanding of ecology and ecological relationships (Feinsinger 1987). At the Annual Meeting in 1987, held in Columbus, Ohio, he formed the Committee for the Education of Young Children, and became both a catalyst and leader in the Society’s outreach efforts in this area.

Putting his philosophy into action, Peter began working with graduate students at the University of Florida to compile a suite of investigations, focused on schoolyards, that teachers could use to catalyze ecological teaching and learning. Through his leadership and inspiration, the schoolyard ecology movement was born (e.g., Feinsinger et al. 1997a, b). Feinsinger produced a book with M. Minno, *Handbook to Schoolyard Plants and Animals of North Central Florida*, and an accompanying text, *The Schoolyard and Wildlife Activity Guide*. These books included detailed information about local biota, highlighted key ecological principles and concepts, suggested imaginative questions to motivate outdoor explorations, and helped teachers formulate investigative inquiry approaches for teaching children about ecology. These books formed the centerpiece of the Florida Game and Freshwater Fish Commission’s education initiative and have inspired similar approaches around the USA. In the mid 1990s, Peter was a collaborator on the NSF-funded project, *Schoolyard Ecology for Elementary School Children*, and more recently, he has championed the schoolyard ecology movement throughout Central and South America.

Dr. Feinsinger is quite unique in his appreciation of fundamental principles of ecology, their relevance to conservation biology, and the importance of translating this knowledge in ways that can be appreciated and understood by young children and the general public alike. Peter serves as a model for how an ecologist can contribute effectively to promoting ecological literacy for people of all ages. He has done this in his own humble way by working behind the scenes and, with great passion and enthusiasm, inspiring his colleagues to get involved. In the spirit of this award, Peter Feinsinger has, through his teaching, outreach, and mentoring activities, related basic ecological principles to human affairs and contributed toward a better world. It is with pleasure that we honor him as the first recipient of the Eugene P. Odum Award for Excellence in Ecology Education.

Literature cited

Submitted by Carol Brewer on behalf of the Odum Award Committee: Monica Turner (Chair), Carol Brewer, Gary Barrett, Richard Bowden, V. Holland, Janet Lanza, Jim MacMahon, Linda Wallace

WILLIAM S. COOPER AWARD

The William S. Cooper Award is given by ESA for recent contributions in geobotany, physiographic ecology, plant succession, or the distribution of organisms along environmental gradients. The year 2000 award goes to Paul K. Dayton, Mia J. Tegner, Peter B. Edwards, and Kristin L. Riser for their paper, “Temporal and spatial scales of kelp demography: the role of oceanographic climate,” published in *Ecological Monographs* 69(2):219–250. Like other recent Cooper Award winners, this paper has large amounts of data from a system where data are difficult to obtain, synthesizes experimental and descriptive studies, and addresses fundamental questions about stability of communities in the face of disturbance along environmental gradients. Here, the Award is given for the first time to the study of an oceanic (or for that matter, any fully aquatic) system.

In several notable recent papers, the authors have been able to extend competition and environmental gradient analyses commonly used in terrestrial systems to the kelp forest community offshore at Point Loma, California. The study examined relative competitive abilities of several genera (*Macrocystis*, *Pterygophora*, *Eisenia*, and *Laminaria*) with contrasting morphological and life history traits, over a depth gradient of 8–32 m, during two contrasting climatic periods; a cold-water nutrient-rich La Niña (1988–1989) and a warm-water nutrient-stressed El Niño period (1992–1994). One of their key findings is that competitive exclusion of other genera by *Macrocystis* during episodes when the water is nutrient rich leaves longer lasting impacts on the composition and functioning of the system than other types of oceanographic climate and disturbance events. The other genera still persist, however, because *Macrocystis* is negatively impacted by physical disturbance and episodes of low-nutrient water that open light gaps where *Pterygophora* and *Laminaria* can flourish for a time. The system diversity is therefore main-